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Simple formulae are given for the calculation of limiting diffusion currents to a series of three 
strip electrodes separated by insulating insertions. 

The direction-sensitive electrodiffusion probes consist of several working electrodes 
( segments) which are separated from one another by thin insulating insertions1 - 3. 

It has been assumed in the basic theory4 of multisegmented probes that these inser
tions are thin enough to preserve the same current distribution as for simple con
nected probes. Recent calibration experimentsS have shown a remarkable effect 
of the insertions on the directional characteristics. 

The theory of convective diffusion to a smooth surface with both the active and 
inactive parts has been developed in several papers6 - 10• Unfortunately, the results 
were expressed merely in the form of multidimensional functional expansions or 
Lebesgue integrals, and therefore they cannot be effectively used. The purpose of the 
present paper is to analyse theoretically the current distribution for three-segment 
probes with insulating insertions and to represent it in a form suitable for numerical 
computations. 

THEORETICAL 

Statement of the Problem 

We consider the convective diffusion of a depolarizer from the bulk of a streaming 
liquid to a planar solid surface. The velocity field is unidirectional with a constant 
shear rate q, 

Vx = qz, Vy = Vz = o. (1) 

The bulk concentration of the depolarizer is constant, 

C ~ Co, for z ~ 00 • (2) 
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The solid surface, located in the plane z = 0, consists of a series of parallel strips 
which are either perfectly active, 

C = 0, for z = 0 , (3) 
or perfectly inactive, 

dzc = O. for z = 0 . (4) 

The transport equation is considered in the common form, 

(5) 

which neglects the effect of longitudinal diffusion. 
For a redox reaction with the transfer of n electrons per one molecule of the 

depolarizer, the current density J is given by the relation 

(6) 

The current to a part of the surface can then be calculated by integrating the expres
sion (6) over the surface. We limit ourselves to planar symmetry. The probe consists 
ofa system of parallel strips of the same width w. The forward edge of the first active 
strip is placed at x = o. Under these specifications, the current to the surface between 
the lines x = 0 and x = const > 0 is given by the integral 

(7) 

If the k-th strip begins at x = X 2k-2 and ends at x = X 2k-l' the partial current to 
this strip, Ik , k = 1,2, ... , see also Fig. 1., is given by the difference 

FIG. 1 

Transport configuration of a series of strip 
segments separated by insulating insertions; 
C = 0 active segments, N = 0 insulating 
insertions 
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For convenience, we introduce the normalized concentration field and the related 
variables C*, Z, and X: 

C* = 1 - c/co, Z = z/Jl., X = x/Jl., 

Jl. = J(9D/q) . 

(9) 

(10) 

A special notation is introduced for the normalized diffusion current and concentra
tion at the boundary: 

C(X) = c(z, x)I:=o/co , 

N(X) = r(t)I(x)/(wnFcoD). 

(11) 

(12) 

The boundary value problem for an unknown concentration field C* can now be 
written in the following form: 

9Z dxC* = dizc*, for X > 0, Z > 0 , 

C*(Z, X) = 0, for X < 0, 

C*(Z, X) -+ 0, for Z -+ 00 • 

(13) 

The boundary conditions on the solid surface, Z = 0, specify either a concentration 
distribution, 

C*(Z, X)lz=o = 1 - C(X) , for X > 0, (14) 

or a distribution of current density, 

dzC*(Z, X)lz=o = N(X)/r(t) , for X > 0, (15) 

where the dot stands for the longitudinal derivative, N = dN/dX. 

If one of the influence functions C(X), N(X) is given, the problem is fully stated 
(well-posed) and can be solved by using an appropriate mathematical technique. 
In particular, the functions C and N are unambiguously related to each other by the 
stated boundary value problem. 

Starting Integral Equations 

It is the decisive point of the analysis to find an explicit functional relation between 
the functions C and N. Generally speaking, such relations are well known for the 
linear parabolic system under considerationll . However, it may be useful to refresh 
briefly a path to the resulting integral equations. 

We shall make use of the Laplace transform. In general, the L-transform of a func-

Collect. Czech. Chem. Commun. (Vol. 54) (1919) 



Electrodiffusion Probes 

tion f(X), X ~ 0, is given as 

In particular: 

and 

where N(O+) = O. 

rep) = L{f(X)} == f~ exp (- px) f(X) dX . 

C(Z, p) = L{ c*(z, X)} , 

dzC(Z, p) = L{dzC*(Z, X)} , 

pC(Z,p) - C*(Z, 0+) = L{dxC*(Z, X)} , 

pRep) - N(O+) = L{N(X)} , 

CW(p) == L{ c*(o, X)} , 

R(p) = L{N(X)} = -ret) p-l dzC(Z, p)!z=o , 

3201 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

The problem for a prescribed surface concentration has the following representa
tion in the L-domain: 

C(Z, p)!z=o = CW(p) , 

C(Z, p)!z",oo = O. 

(23) 

(24) 

(25) 

This is an ordinary boundary-value problem with the single independent variable, 
Z E (0, (0), containing two parameters p, Cwo Because of the linearity of the problem, 
knowledge of any non-trivial solution Co(Z, p) is sufficient to express the general one: 

(26) 

As a consequence, the corresponding fluxes are given as: 

(27) 

where 

(28) 

We actually know certain explicit solutions to the problem. At constant surface 
concentration, the solution has been given by Leveque: 

C*(Z, X) = - exp (-s) S-2/3 ds . 1 f«l 
r(t) Z3/X 

(29) 
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In particular: 

C(X) = 0, N(X) = ~X2/3 , 

CW(p) = p-1, R(p) = ret) p-S/3 . 

Another simple explicit solution is known at constant current density: 

(30) 

(31) 

c*(z, X) = ~ [X1/3 exp (_Z3jX) - Z fOO exp (-s) S-1/3 dsJ. (32) 
B Z3/X 

In particular: 

N(X) = X, C(X) = 1 - 3X1/3jB, 

R(p) = p-2, CW(p) = p-4/3jr(t). 

The both particular solutions result in the same relation: 

R(p)jcW(p) = ret) p-2/3 , 

(33) 

(34) 

(35) 

which is valid for any admissible longitudinal courses of surface concentrations or 
diffusion currents. 

By applying the convolution theorem 11, various integral relations can be derived 
between the original influence functions C and N. The following two representations 
appear to be most useful in solving the problem under consideration: 

N(X) = J~ (X - tt1/3 [1 - C(t)] dt, 

C(X) = ~ fX(X - st2/3 [S-1/3 - N(s)] ds. 
B 0 

Current Distributions for a Series of Strip Segments 

The considered transport configuration has been shown in Fig. 1, where 

(36) 

(37) 

(38) 

The probe consists of several parallel strip segments separated by strip insulating 
insertions. Our aim is to determine the normalized current distribution N(X) by 
solving the integral equations (36) and (37) under the following conditions: 

N(X) = 0, C(X) = 1, for X < 0, (39a) 
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C(X) = 0, for X2k - 2 < X < X2k - 1 , (39b) 

N(X) = 0, for X2k - 1 < X < X2k • (39c) 

From the integral equations (36) and (37) it is apparent that the fluxes or concentra
tions can be calculated to the extent in which the counterpart distributions are known 
in advance. Because the functions C(X) and N(X) are alternately known from the 
conditions (39a, b, c), the simultaneous application of the integral equations (36) 
and (37) results in an obvious recursive algorithm. Our main task is the conversion 
of the resulting multidimensional integrals to more appropriate computational 
formulae. The technical details of the derivation are given in the Appendix which 
should be consulted, e.g., for the definitions of the auxiliary functions F and ~ and 
the constant B. 

Flux to the first segment, X E (0, X 1). After the starting concentration jump at 
the point X = Xo = 0, the concentration at the surface of the first segment is zero. 
The corresponding current distribution, identical to the well-known Leveque result, 
can be obtained from Eq. (36): 

N(X) = ~-X2/3 . (40) 

Concentration at the first insertion, X E (X to X 2). The calculation goes still straight
forwardly by direct using of Eq. (37): 

C1(X) = 1 [f: 1 + f:l}x -st2/3 [S-1/3 - N(s)] . ds = 

= ~ fX (x - st2/3 S-1(,3 ds = [1 - F(X1/X)] . 
B XI 

Flux to the second segment, X E (X 2, X 3). By applying Eq. (36), we obtain 

N(X) = tX2 / 3 - Ji:(X - ttl/3 Cl(t) dt = 

(41) 

= tx2 / 3 !... Ji:(X - ttl/3 [1 - F(X1/t)] dt, (42) 

which can be simplified to the following form: 

(43) 

Concentration at the second insertion, X E (X 3, X 4 ). There are four local branches 
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of N(X) which must be known for direct application of Eq. (37): 

(44) 

The concentration distribution can then be expressed by means of two-dimensional 
integrals of the incomplete Beta function: 

(45) 

Flux to the third segment, X E (X4' X 5)' The starting representation, 

N(X) = tX2 / 3 _ fX> Cl(t) dt _ fX' Cit) dt , 
Xl (X - t)1 /3 Xl (X - t)1/3 

(46) 

can be decomposed by using the known expressions for C1 and C2 : 

(47) 

where 

(48) 

iX2/3Q = fX> 1 - F(Xt/t) dt 
1 Xl (X _ t)l f3 ' 

(49) 

(50) 

X 2 13 _ _ 1_ du 1 fX' dt fX' ds fX> 1 - F(X Ill) 
i Q3 - 3B X3 (X - t)1 f3 X 2 (t - s)2/3 Xl (s _ U)413 . 

(51) 

These terms can be reduced to quadratures and elementary functions: 
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Q4 = 1 - x~/3 - ~(X3' x 4) , (52) 

Ql = 1 - Xi /3 - ~(Xl' x 2), (53) 

Q2 = ~(X2' x 4) - ~(Xl' X4) + ~(Xl' x 3) - ~(X2' X3)' (54) 

(55) 
where 

(56) 

For the particular case where X = X 5' the term N(X5) gives the normalized overall 
current to the three-segment probe, and the quantities Xk become the geometrical 
simplexes: 

(57) 

RESULTS 

Partial Currents to Individual Segments 

Eqs (40), (43), and (47) can be rearranged to give the following expressions for the 
partial currents 11 , 12 , 13 to the individual (strip) segments of a three-segment probe: 

where 

Q5(Xt> x 2 , x 3 , x 4 ) = ~(X3' x 4 ) - 1 + ~(Xl' x 2) -

- ~(Xz, x 4) + ~(Xl' x 4) - ~(Xl' x 3) + ~(Xz, x 3) + 

+ x~/3 [1 - ~ c:' ::) ] + Q3 . 
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Asymptotic Representations of Partial Currents 

There are two extremal transport situations with apparent physical meaning - the 
case of asymptotically large or small insertions, as compared with the lengths of the 
segments. 

For the case of large insertions, every segment behaves as a single electrode and 
the partial currents are given by the Leveque formula, see Eq. (40). The expression 
(59) can be, for X2 - Xl ~ X3 - X2, X2 - Xl ~ Xl' approximated in the following 
way by using the asymptotic expansions (A22), (A24): 

(63) 

where the first term represents the Leveque formula. 
In a tedious but straightforward way it is possible to obtain an analogous result 

for the third segment: 

[ 3 [[X J2 /3 [X - X J2/3J J 13 ~ K(xs - X4)2/3 1 - 2B X: + 3 Xs 2 + .... (64) 

For small insertions, the current distribution over the entire three-segmented probe 
is nearly the same as for a single electrode, and hence the Leveque formula can be 
used for calculation of the total current between the forward edge of the probe and 
the boundaries of the individual segments. The expression (59) can be, for X2 - Xl ~ 
.\3 - X 2, X 2 - Xl ~ XI' approximated by using the asymptotic expansion (A23): 

(65) 

By analogy, an approximate expression for 13 can be found in the form 

(66) 

Effect of Insertions on Diagnostic Sensitivity 

The ratio of the partial currents to individual segments does not depend on the 
transport properties of the solution but it can depend sensitively on various kinematic 
features of the flow close to the wall, e.g. flow direction4, nonlinear velocity profiles 12 , 

or longitudinal changes of the shear rate 13. The presence of insulating insertions 
reduces the differences between the partial currents and, as a result, diminishes the 
sensitivity of segmented probes to the forementioned flow features. 
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This loss of the diagnostic sensitivity is shown quantitatively in Fig. 2. for two 
strip segments of equal lengths L separated by insulating insertions of varying size G. 
The effect of insertion is negligible in the region GIL < 0·01. An acceptable diagnostic 
sensitivity is maintained up to GIL = 1. The screening effect of the forward segment 
becomes negligible for GIL> 100. Analogous conclusions can be made for the 
:system of three strip segments of equal size, as shown in Fig. 3. 

FIG. 2 

Effect of insulating insertions on diagnostic 
~ensitivity of a two-segment probe; dashed 
.lines - asymptotes, Eqs (63)-(66) 

C3 L_-7 
FIG. 3 

Effect of insulating insertions on diagnostic 
sensitivity of a three-segment probe; dashed 
lines - asymptotes, Eqs (63)-(66) 
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FIG. 4 

Front view of an actual three-segment probe, 
with the scheme for the calculation of cur
rents to the individual segments 
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Segmented Circular Probes 

A typical three-segment probe for direction-sensitive shear rate measurements is 
shown in Fig. 4. The currents to the individual segments of such a probe can be cal
culated by dividing the area of the probe into a system of parallel differential strips. 
It can be seen from Fig. 4. that, in some cases, it is necessary to calculate the currents 
to three consecutive segments separated by insertions of considerable sizes. In the 
present paper, we have found convenient computation formulae, Eqs (58)-(60), 
for accomplishing this task. The direction characteristics of such non-ideal segmented 
probes will be analysed in our later report. 

CONCLUSIONS 

The equations of convective diffusion in the diffusion-layer approximation have 
been solved for the flow with constant velocity gradient q and longitudinally varying 
conditions at the wall which represent an alternation of electrochemically active 
segments and insulating insertions. The problem of two consecutive electrodes, 
known from the literature6 , has been solved here by using substantially simpler 
means. Explicit formulae have also been given for the system of three consecutive 
electrodes, which is of some importance in the theory of direction-sensitive electro
diffusion probes4 ,13. The main result consists in the reduction of the integral (51) 
to a single quadrature (55). 

As shown by several authors 7 ,9, the suggested way of including the effect of in
sulating insertions on the current distribution is not limited to unidirectional kine
matics of flow. The same formulae (58)-(60) can be used for any laminar flow, if 
the longitudinal coordinates Xk are replaced by the corresponding variables in ac
cordance with Lighthill transformation. 

The effect of former segments on the current to a segment placed down the stream 
is represented by a correction coefficient which depends only on geometrical sim
plexes of the electrode system. In particular, it is independent of the flow velocity 
and of the liquid properties. Such conclusions are, however, limited to the sizes of 
insertions and active segments which are substantially larger than the diffusion 
thickness14 and, on the other hand, sJlbstantially smaller than the macroscopic scales 
of the flow. Fortunately, such conditions are fulfilled safely for the probes used in the 
electrodiffusion flow diagnostics. 

APPENDIX 

Beta Function and Related Integrals 

The function F(x) is identical with the standard incomplete Beta function: 

F(x) == B- 1 f~ (1 - S)-2/3 S-I/3 ds, (AI) 

Collect. Czech. Chem. Commun. (Vol. 54) (1989) 



Electrodiffusion Probes 3209 

B = H (1 - st2/3 S-1/3 ds = ret) ret) = 2n/J3, (A2) 

and it can also be expressed by elementary functions: 

F(x) = ~ + ~ arctan [~(_X_)1/3 - ~J -~ In [(1 - X)1/3 + X1/3] (A3) 
4 2n J3 1 - x J3 2B 

The following series expansions 

with x -+ 0, and 

F(x) ~ ~ X 2 / 3 [1 + /5 X + ... ] 
2B 

F(x) ~ 1 - - (1 - X)1/3 1 + -- + ... 3 [1-X ] 
B 12 

(A4) 

(AS) 

with (1 - x) -+ 0, are used in the main text for developing various asymptotic re
presentations. 

In some cases, the integrals of rational functions with fractional exponents can be 
expressed by elementary functions: 

1 I" ds 1 (X - b)1/3 
3" b (s - a)4/3 (x - S)2/3 = X - a b - a 

(A6) 

However, special functions must often be used: 

~fb ds = F(~) 
B /I (s - a)1/3 (x - S)2/3 X - a ' 

(A 7) 

~I" ds = F(~) 
B b (s - a)2/3 (x - S)1/3 X - a ' 

(AB) 

~ fb dt = X-1/3 F (_b_) 
B 0 t1/ 3(X + t) x + b ' 

(A9) 

~ foo dt = X- 2 / 3 F (_x ) 
B b t 2 / 3 ( x + t) x + b ' 

(AIO) 

- -- ---- -- F ---- +F --, 1 fa (s - a)2/3 ds _ (a - V)2/3 (b - a x - V) (b - a) 
B b x-s s-v x-v b-vx-a x-a 

(All) 
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~ fX (~)2/3 ~ = (~)2/3 F (~ ~) _ F (~), 
B b s-a s-v a-v b-vx-a x-a 

(Al2) 

_ -- --=--- F----+F--, 1 f" (s - a)1/3 ds (a - V)1/3 (X - b a - v) (x - b) 
B b x-s s-v x-v b-vx-a x-a 

(A13) 

~ fb (~)1/3 ~ = (~)1/3 F (~ ~) _ F (~), 
B "s-a s-v a-v b-vx-a x-a 

(A14) 

1 f" xl / 3a2 / 3 ds (a x - b) 
B b (x - S)1/3 (s - a)2/3 s = F b x - a ' 

(AI5) 

(AI6) 

! fb [1 - F(a/t)] dt = (x - b)-1/3 [1 - F (~)J - X- 1/3 [1 - F (~~)J' 
3" (x - t )4/3 b b x - a 

(Al7) 

~ fb [1 - F(a/t)] dt = x2/3 _ a2/3 _ x2/3 ~ (~, !?) . (AlB) 
3 " (x - t)1/3 x x 

The auxiliary function ~, 

has the following asymptotical representations - for a ~ 0: 

~(a, P) ::::i (1 - p)2/3 - F(1 - P) a2/3 + ~ «1 - P)/P)2 /3 a5/ 3 , (A20) 
B 

for (1 - alP) == s~ 0: 

~(a P) ::::i 1 - p2/3 + ip2/3s _ 3p (1 - Pt l/3 s4/3 ::::i 
, 2B 

(A21) 

and for (1 - P) == s ~ 0: 

( 1) ( a )2/3 ~(a, P) ::::i [1 - F(a)] s2/3 - 1 - B 1 _ a s5/3 . (A22) 
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SYMBOLS 

B= 21t/.J3 
c concentration field of depolarizer 
Co bulk concentration of depolarizer 
C· normalized concentration field, Eq. (9) 
C(X) normalized surface concentration, Eq. (11) 
Ck(X) representation of C(X) for k-th insertion 
D diffusivity of depolarizer 
dx , d" partial derivatives 
F(x) incomplete Beta function, Eq. (AI) 
G lenght of an insulating insertion 
1 current, Eq. (7) 
lk partial current to k-th segment, Eq. (8) 
J current density, Eq. (6) 
K transport coefficient, Eq. (61) 

L length of a segment 
nF electric charge corresponding to the conversion of 1 mole of depolarizer 
N(X) normalized current, Eq. (12) 
iI(X) == dN/dX normalized current density 
q shear rate, Eq. (1) 

vx ' v.l" Vz velocity components 
x longitudinal coordinate (parallel to the flow) 
xk value of x for the boundary between segments and insertions, see Fig. 1. 
X = x//1, X k = Xk//1, 

Z normal coordi~ate (perpendicular to the wall) 
Z = z//1 
w width of a segment (size across the flow) 
"k = xk/xS = Xk/XS 
~ auxiliary function, Eq. (A19) 
/l length scale, Eq. (10) 
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